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Arbitrary spin field equations on curved manifolds with 
torsion 

N H Barth and S M Christensen 
Institute for Field Physics, Department of Physics and Astronomy, University of North 
Carolina, Chapel Hill, NC 27514, USA 

Received 3 June 1982 

Abstract. In previous work a particularly simple set of arbitrary spin field equations for 
fields propagating on curved manifolds without torsion was proposed and studied. The 
consistency of those equations put some very strong conditions on the kind of background 
gravitational fields allowed, given that a certain quantum field did not vanish. As a prelude 
to an extensive study of index theorems and anomalies in the case of non-zero torsion, 
new arbitrary spin field equations are developed and the consistency conditions discussed. 
Some of the machinery needed for future investigations of arbitrary spin fields is developed 
using the two-component spinor formalism. 

1. Introduction 

Standard general relativity theory can be extended in many ways. One popular way 
is through the addition of torsion. On the classical level a great deal of work has 
been done on this possibility. Until recently very little had been done at the quantum 
level. Motivated by the successes and limitations of supergravity, which is a torsion 
theory, this is changing. Numerous papers are now appearing that treat some aspect 
of field theory on curved manifolds with torsion. 

In this paper we begin a generalisation of some earlier work (Christensen and 
Duff 1979) to the case of non-zero torsion. In that paper we covered many topics: 
conformal and axial anomalies, index theorems and super index theorems. The analysis 
of all of these was based on a set of arbitrary spin field equations on curved manifolds. 
The equations were found to have many interesting properties. In particular, we 
found that in order for certain fields to exist on a manifold, restrictions on the curvature 
called consistency conditions were required. These conditions are very severe for 
fields with spins higher than two. In fact, based on the field equations we presented, 
there seemed to be no easy way to have physical fields with spins higher than two on 
anything but a flat manifold. Since we were mainly interested in applying our results 
to low spin theories like supergravity, we were not too concerned with this problem. 

Interest in spin-2 ‘hypergravity’ theory has increased because of the limitations of 
supergravity. It has been proposed that hypertheories could have a bigger particle 
spectrum corresponding more closely with the actual elementary particle spectrum. 
We shall not pursue this line of thought here. Rather, we wish only to see how the 
addition of torsion changes the field equations and their consistency conditions. This 
paper is designed to present a foundation for later work. There is considerable detail 
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involved in some of the sections. It has been pointed out (Christensen 1980) that 
torsion theories can be extremely complicated. Nothing we present here will contradict 
that opinion. 

The amount of literature on torsion, higher spin field equations, supergravity and 
hypergravity is enormous, We will list a reprqsentative collection of papers. These 
papers and the references in them give a good overview of the topics covered in our 
work. 

For a review of classical torsion theory see Hehl et a1 (1976). Supergravity theory 
is summarised nicely in van Nieuwenhuizen (1981). Discussions of spin-2 hypergravity 
can be found in Aragone (1981), Aragone and Deser (1979a, b, 1980), Berends et a1 
(1979a, b, 1980), and van Holten (1979). Information on higher spin fields in general 
is found in Buchdahl (1958, 1962), Christensen and Duff (1979), Curtright (1979), 
Dowker and Dowker (1966), Fang and Fronsdal (1978), Freedman (1979), Fronsdal 
(1978,1979), Lichnerowicz (1961, 1964), Penrose (1968) and Singh and Hagen 
(1974a, b). Recent work focusing on low spin fields propagating on curved manifolds 
with torsion, as well as the conformal and axial anomalies and index theorems 
associated with them, has been presented in Barvinsky and Vilkovisky (1981), 
Christensen (1980), Goldthorpe (1980), Kimura (1981), Nieh and Yan (1982) and 
Obukhov (1982). 

In 9 2 we introduce the properties of the torsion and Riemann tensor. We note 
that the symmetries of the Riemann tensor and Ricci tensor change when torsion is 
added. Useful tensor and two-component spinor notations are developed. We have 
found that two-component spinors provide the best formalism for studying arbitrary 
spin field equations and their properties. 

In our previous work we found that two-component spinor decompositions of 
tensors were the easiest quantities to use when considering the consistency conditions 
imposed on the curvature. Decompositions of this type are presented in 9 3 .  As we 
might expect, they are somewhat more complicated in the non-zero torsion case. 

Ultimately we will want to compare our torsion results with the torsion-free cases. 
Section 4 provides the tensor and spinor relations needed to do this. 

The two-component spinor Ricci identity derived in Pirani (1964) is a key element 
in the study of higher spin field equations and their consistency conditions. In 9 5 we 
use some of the efforts of the previous sections to obtain the Ricci identities with 
torsion. 

In 9 6 we present our arbitrary spin field equations. These are the easiest generalisa- 
tion we could find of our torsion-free equations. We do not pretend that these are 
the only set of equations possible. They may not be the correct ones. Too little is 
known at this time about the physical requirements. We do, however, believe that 
they provide a very good specimen of the kind of equations that will undoubtedly 
appear. 

It is important to point out a few things about our field equations. First, the 
equations are really field equations for fields transforming according to the ( A , B )  
representation of the group SO(4). Physical fields are in general some combination 
of these fields determined by requirements of gauge invariance. We do not examine 
questions of gauge invariance of our equations or whether they can be derived from 
an action principle. It is not always possible, as far as we see it, to demand gauge 
invariance. Gauge invariance is often used to ensure that physical particles propagate 
without tachyons or ghosts. However, there are examples of theories that have gauge 
invariant actions but contain particles with tachyonic or ghost properties. Fourth-order 
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gravity theory is such a theory. The unphysical particles have to be treated in some 
other way. 

We can, of course, require that each field have gauge invariant field equations. 
This restriction, along with the consistency conditions, can force the torsion to be 
zero or compel us to modify the couplings of the fields to the torsion. We plan to 
consider this in some future publication. 

The most important result of § 6 is that the consistency conditions are not 
necessarily as restrictive as the torsion-free conditions of earlier work. 

2. Notation, conventions and definitions 

Picking a good set of conventions is sometimes more difficult than the problem being 
considered. We pick our notations and definitions so that they are as consistent with 
Misner er a1 (1973), Pirani (1964), Christensen and Duff (1979) and Christensen 
(1980) as we can make them. The choices made have served us well in performing 
the complicated computations involved in this work. 

We consider quantum fields propagating on curved manifolds. For simplicity the 
manifolds will be compact without boundary. The metricsignature will be (+ , + , + , +), 
that is, we work in a Euclidean regime. We will work with two different connections 
on the manifold, one symmetric connection (the Christoff el symbol) 

(2.1) 

(Greek indices take values 0, 1 ,2 ,3) ,  and one non-symmetric connection Fapy, to be 
defined by demanding that it be 'metric compatible'. If the covariant derivative V, is 
defined using Fapy,  metric compatibility is 

Fapy = t g Q s  (avgps + dogYS - asgpy)  

qpgap = awga, - papgpp - p p f i g u p  = 0, (2.2) 
where a, is the usual partial derivative with respect to xLI .  Using (2.1), it is easy to see 
that 

(2.3) 

Tp," E F Q p y  - F a y p  (2.4) 

Type =-Tpyu, (2.5) 

1 
F Q p y  = r a p y  +$To," - +Tupy - yTayp 

where 

is the torsion tensor with 

We define the contorsion tensor via 

KO; =$(Top - Tupy - T a y @ ) ,  
so that 

PDy = rQPy + K ~ ; .  (2.7) 
Lowering the (Y index, we note that 

The Riemann tensor for connection Fupy is 

Zipvs = ayFQps - a s P o ,  + FEpsPEy -FEpyFaES 
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and 

R~~~~ = a,. raps - asroLp,. + rEPsraE,. - rEpvrass 

&,.S = -Rapys ,  Rmy = -RaBv6 (2.11) 

(2.10) 

for rapy. The symmetries of Rapvs are . 
while for Rapvs they are 

(2.12) 

(2.13) 

and the Bianchi identities are 

The tensors derived from the Riemann tensors are the Ricci tensors 

R a p  = R y a y p ,  d,, = (2.18,2.19) 

and the Riemann scalars 

R = R“,, R =Rat , .  
Note that 

Rpa =Rap - - 
but, because R ysap # R a p y s ,  

R p ,  # Rap. 

(2.20,2.21) 

(2.22) 

(2.23) 

We use the Levi-Civita tensor 
neighbouring pairs of indices. We take 

which is antisymmetric on interchange of 

e0123 = 1, (2.24) 

and because we are in Euclidean space, 
& “ P Y S  = 

E a p y s .  (2.25) 
Using eapyS we can define the duals of the torsion and Riemann tensors 

*Tapp = $eapWYT@yP, *R a p y s  = S E ~ ~ @ ~ R ~ ~ , . S ,  (2.26,2.27) 

(2.28) * R a p y s  = ~ ~ a B @ v ~ @ Y Y s ,  R apys  ~ ~ ~ s @ ~ R ~ p ~ ~ .  

From these we produce the self-dual ( + ) or anti-self-dual ( - )  parts of the torsion and 
Riemann tensors 

*Tapp = ;(Tapp **Tapp) ,  *Rapys = 8 R a p y s  **Rap7s), (2.29, 2.30) 

g&i = dRapys *k&s), * R a p y g  = M , p 7 s * * R , p 7 s ) .  (2.31) 

- *  

1 ’  
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Note that when the torsion is non-zero, the Riemann tensor has right and left duals 
and therefore right and left dual parts. 

The operations of symmetrisation and antisymmetrisation on indices are respec- 
tively 

A ( , v ~ ~ k 4 , v  +Av, ) ,  A[, ,]  %A,, -A, ,  1. ( 2 . 3 2 , 2 . 3 3 )  

Before moving onto two-component spinors, we give the definition of right-( +) or 

+* 4 1  * r5)+. (2.34) 
left-( - )  handed fermions 

ys is the usual Dirac matrix 

( 2 . 3 5 )  

where I is the 2 x 2 unit matrix. Lastly, we use the covariant d'Alembertian 

0 = V,V". (2 .36 )  

Two-component spinors provide a very nice formalism for studying the arbitrary 
spin problem. Tensor and spinor indices look the same and are manipulated in the 
same way. The rules are very simple (see Pirani (1964) and Jackiw and Rebbi (1977) 
for details). Each tensor index is replaced by a pair of spinor indices, one unprimed 
and one primed, 

(2 .37 )  

(capital Latin indices take on values 1 and 2 )  and each spinor has either one primed 
or one unprimed index according to how the spinor transforms under the SO(4) group 
irreducible representations (;, 0)and (0,;) (Weinberg 1965). For example, 

$+ + *A, 9- + 9 A ' .  (2 .38 )  

A primed index can always be commuted through an unprimed index, but two primed 
or two unprimed indices may not be commuted unless the tensor is given some special 
symmetry property. In other words, 

Tas ... + TAA'BB' ... , 

~ A A '  = ~ A ' A ,  

but in general it is not necessarily true that 

~ B A  =  AB or ~ B < A #  = ~ A ' B ' .  

A general spinor ~ A , . . . A ~ ~ A ~ . . . A ~ ~  transforms according to the (A,  B )  irreducible 

(2.39) 

representation of SO(4) if 
- d AI ... A ~ A A ~  ... A ~ B  - ~ ( A ~ . . . A ~ A ) ( A ~ . . . A ~ B ) .  

Such a multi-spinor has 

D ( A ,  B )  = ( 2 A  + 1)(2B + 1) (2.40) 
degrees of freedom. Any multi-index spinor can be transformed into a combination 
of spinors that transform according to different ( A , B )  representations. To do this 
we need the spinors 

AB A'B'  = 0 1  
& = € A B = &  &A'B'=  ( ) -1 0 

(2.41) 
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Clearly, each of these spinors is antisymmetric. They are used to raise and lower 
indices according to the rules 

A A B  B 4 = E  4 B 9  4 A = d  €BA, 

A' A'B '  B' (2.42) 

(These rules must be followed.carefully. Sign mistakes occur if any index is out of 
place.) It is easy to see that 

SAA = 2, (2.43) 

with the indices in precisely this order, is the Kronecker delta and that ,for any spinor 

(2.44) 

A simple example of a spinor decomposition is that of a two-index spinor 4AB.  

4 = E  4 B ' y  d A ' = 4  E B ' A ' .  

B BC 
SA = E  EAC, 

A A dA ... ... = -4 ... A..: 

Write 

4 A B  = i ( 4 A B  + 4 s a )  + 34.u - 4 B A ) .  

Note that any antisymmetric two-index spinor must be proportional to Thus 

i ( d A B  - 4 B A )  = C&AB* 

Hitting this with e A B ,  we get 4 A A  = 2C or C = $4cc, 
Thus 

(2.45) 

4aB contains a part that transforms via (1, 0), $ J ( ~ ~ ) ,  and a part that transforms via 
(0 ,  O), 4 ~ " .  Any multi-spinor decomposes similarly. Equation (2.45) indicates that 
if a spinor is symmetric in a pair of indices, it is trace-free in those indices. In the 
next section we decompose the torsion and Riemann tensor into irreducible spinors. 

1 C  AB =  AB) + Z E A B ~ C  

3. Spinor decompositions 

The decomposition of the torsion, contorsion and Riemann tensors is a straightforward 
but tedious task. We will start with the simplest case, the torsion. The first step is to 
write 

T a p r  + TAA'BB~CC'. 

Remembering equation (2.5), we take 
1 TAA'BB,CC~ = ~ T A A ~ B B ~ C C ~  - TBB'AA'CC~ ) 
1 

= ~ T A A ' B B T C ,  - TBA,AB,CC# + TBA,ABJCC* - TBB~AA'CC~ ) 

= iEABTPA'PB'CC' + 2E A'B'TBP~A CC'. (3.1) 
1 1 P' 

Now consider TBp,Ap'cc,. Because of (2.5) and (2.44) we have 
P' P' P' TBP'A cc' = -TA BP'CC' = TAP'B ccf. 

P This says that and TPA' B'CC' are symmetric in AB and A'B'.  
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where 

We can now translate these quantities into torsion spinors (3.2). From the definition 
(2.6) 

(3.6) 1 KAA~CCBB~ ~ T A A , C C ~ B B ,  - TBB~AA'CC' - TBB~CC~AA' 1, 
so that 

and 
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and the Riemann scalar decomposition 
AA' R zRAA' = 12(A+X). ( 3 . 1 1 )  

Before looking at this decomposition in more detail, we write the well known 
RaPvs decomposition (see Pirani 1964) 

RAA'BB'CC'DD' = EA'B'&C'D'[*ABCD + NEBCEAD + EBDEAC)]  
+ &AB&CD [QA,B ,C'D,  + A(EB,C'EA,D' + EB'D'EA'C')] 

( 3 . 1 2 )  
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In the next section we shall see how the quantities defined in terms of the Fapy 
connection can be written in terms of objects constructed from rapy and Tapy. 

4. Riemann tensor conversion 

Ultimately we will want to be able to compare computations done with ppy with 
those using rIpy. In this section we will present the rather complicated relations 
between the Rapvs Riemann tensor and its spinor decomposition and Rapys and its 
decomposition. 

We begin with equations (2.7), (2.9) and (2.10) and find that 

R aBvs = R apvs + v j p S a  - v&; + K ~ ; K ~ ~ ~  - ~ ~ ~ ~ ~ ~ y l \ ,  
R p s  = Rps + VaKpSa - V a p , "  + KAaaKpp - KhSaKpah, 

R = R + v ~ K ~ ~ ~  - v ~ K ~ ~ ~  + K ~ ~ ~ K ~ ~ ~  - K ~ ~ ~ K ~ ~ ~ .  

(4.1) 

(4.2) 

(4.3) 

These can also be written in terms of Tapy rather than Kayo by using (2.6): 

f i N p v s  = RapVS +i(V,Tps" -V,Tp; +V,T"p, - V y T a p s  +VsT",p -VyTa,p) 

+~(T,;T,," - ~ ~ ~ ~ ~ ~ y h  + T ~ ~ ~ T ~ ~ ~  - T ~ ; T ~ ~ ~  + T ~ ~ ~ T ~ ~ ~  - T ~ ; T ~ ~ ~  

+ - T ~ ~ ~ T ~ ~ ~  + T ~ ~ ~ T ~ ~ ~  - T ~ ~ ~ T ~ ~ ~  + T ~ ~ ~ T ~ ~ ~  - T ~ ~ ~ T ~ ~ ~  
+ ~ ~ ~ ~ ~ ~ y h  - T " , , T ~ ~ ~  + T ~ , ~ T ~ ~ ~  - T ~ ~ ~ T ~ ~ ~  + T ~ ~ ~ T ~ ~ ~  - T ~ ~ ~ T ~ ~ ~ ) ,  

(4.4) 

(4.5) 

(4.6) 

1 R p s  = R p s  + iVaTpsa - VsTpaN - TV,T",, - ;V,T"sp 

++T,,~(T& - T~~~ - T ~ ~ ~ ) + ! T ~ ~ ~ T ~ ~ ~  + $ T ~ ~ ~ T ~ ~ ~ ,  
f i  = R - 2V"Tapp - ThUaTApp +' 4T T a p A  + fTNPhTahp. 

Either (4.1) or (4.4) can be used to find the spinor quantities with a tilde on them 
in terms of those with no tilde and the torsion tensor decomposition. It turns out that 
using (4.1) shortens the work. It is easy to derive the relations 
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them on the U's. For example 
- CC' - CC' 

= A + QVC-, 0 cc + fV cc' U cc' - & Ucc< U - & Uc-8 U cc' - 2 UCC) U 
- A ' B ' C ' C  + F A f B g C # C T  

(In deriving the above we use the property of two-component spinors that says 
LCYA ... BLC ... D )  = 0 for any spinor LC'A ... B . )  

C' 

5. Spinor Ricci identity with torsion 

We now generalise the spinorial version of the Ricci identity given by Pirani (1964) 
to the non-zero torsion case (remembering that we use Misner eta1 (1973) conventions 
which are slightly different from Pirani's). In tensor form, the Ricci identity for the 
covariant derivative 9, acting on the tensor Bap is 

(?,?, -?vVs)BaP = T,/VpBap +gaP,,Bpp +kppp,Bap. (5.1) 

This is easily obtained from the definition of 6 ,  acting on BaP 

?,BaP E a,B,, - fPa,Bpp - FppwBap. ( 5 . 2 )  
In spinor terms equation (5.1) becomes 

(?AAjVBBn - V B B ~ V A A ' ) B C C ! D D -  - PP' - PP' - PP' 
= TAA'BB'PP~V BCC'DD' + Rcc AA'BB~BPP'DD' -I- RDD, AA~BB~BCC'PP'.  

(5.3) 
Following Pirani, we can write 

(5.4) V A A ~ V B B ' - V B B ~ V A A '  = EABVP(A,V B')  + E A ' B ' V P ' ( A V  B )  

BCCDD' = S C S D E C ' D - .  ( 5 . 5 )  

' 'P ' 'P' I '  

and choose 

Equation (5.3) becomes 

E A B ~ P ( A , V ~ B , ) ~ C ~ D E C ' D , +  E A ~ B , v P * ( A v  B ) S C ~ D & C ' D ,  
' 'P' 

. - ' PP' P P 
= TAA'BB'PP'Q S C S D E C ' D ~ -  R C C ' P D ' A A ' B B ~  5~ - RDD!PC'AA!BB*~ 5c 

A B  C'D' and, if we contract this with E E , we get 
' 'P Q ' Q P  4VP(A'V B ' ) e d D  = 2 T Q A ' Q B ' ~ ~ ' ? P P ' 6 d ~  - R C Q ' P  QA' B ' 6  6 D  - k D Q ' P Q ' Q A ' Q B ' 6 P 8 C .  

Suppose that we then contract with q CqD, where q is an arbitrary covariantly constant 
spinor, i.e. 

6 A A f q  = 0. 

It is then a simple matter to obtain . .  
V ~ ( A , V ~ B , ) ~ C  = t ~ Q A , ~ B , p p , 6 " ' 6 c  - aZcQ'pQ'QA'QB,eP .  

In a similar fashion we can also obtain 

1 V p ' ( A Q P ' B ) t C  = ~ T A Q ~ B ~ ' ~ ~ V " ' ~ ~  - ~ C O ~ p Q ' A p ~ B P ' ~ P .  

(5.6) 

(5.7) 
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torsion in the covariant derivatives. This is seen if we rewrite ( 6 . 1 )  as 

-04 = -U4 - Tull*Vu4. 

If we restrict the torsion to be trace-free then indeed there is no coupling, but in 
general the coupling does exist and will contribute to the one-loop counterterms, for 
example.) 

( 3 )  Acting on 4A and 4 ~ )  (from equation ( 2 . 3 4 ) ) ,  d coincides with the square of 
the Dirac operator y*p f i .  In two-component spinor language we have 

y*V,, + VAA'.  

The Dirac equation for 4 A  is then 

pBA'l$ = 0. 

We 'square' the equation by hitting ( 6 . 3 )  with ?AA! 

VAAtVA'B4  = 0. 

We can rewrite this as 

p H r ( A ? B j H ' 4 B  +?H'[AaB]H'4B = 0 

or 

- -k 2 p H ' ( A p B ) H ' 4  = 0. 

Writing out the Ricci identity part of ( 6 . 5 ) ,  we have 

- &A + ~ A Q j B ~ ' p p C 9 ~ ' ' 4  + tRlBpppP'AQ'BQ'4P = 0. 

This reduces to the usual field equation when Tup? = 0, namely, 

- o ~ A  + : R ~ A  = 0. 

(4) Acting on vector fields that satisfy VwAw = 0, that is q5 (3, $) fields, d is 

- ~ I A , - T , , P ? ~ A ~ + ~ , + A ~ = O ,  

the Maxwell operator. (Remember that the Ricci tensor is no longer symmetric.) 
( 5 )  For spin-; fermions that satisfy ye$@ = 0 (i.e. 4(1, i) and 4(+, 1) ) '  we require 

that d coincides with the right- or left-handed parts of the square of the Rarita- 
Schwinger operator. In fact, when yLIGfi = 0, we will see that d reduces to the square 
of the Dirac operator. The first-order spin-; field equation is 

YSYYVA*T - = 0. (6.9) 
Using the identity 

E * " A T y 5 y u  = y r y A y * )  = ( Y * Y A y T - g * ' " Y ' + g * T y A  - g A T y * ) ,  ( 6 . 1 0 )  
(6.9) becomes 

(YFYhYT-g*'"Y'  +g*"'yA -gAry*)6A$L, = 0. ( 6 . 1 1 )  

Before proceeding any further, it is important that we consider the quantity p,yu, 
that is, we want to know if we can commute the y&'s through covariant derivatives. 
The answer is yes, if we define the spin connection G a b l l  in the right way. First note 
that the spin connection in the torsion-free case is usually defined by requiring (see 
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for example DeWitt 1965) 

V,e ay  = a, ea" + rYpr e a p  + w e bu = 0. (6.12) 

In (6.12), ea" is the vierbein with letters from the first part of the lower case Latin 
alphabet indicating bein indices and letters from the later part of the Greek alphabet 
representing tensor indices. Clearly for (6.12) to be true we must have 

(6.13) 5 -eb,a,e " - Y,,e awebus 

We use this to define the covariant derivative on spinors via 

(6.14) 

where we put in the spinor indices cy, p, . . . when needed. In (6.14) the SO(4) 
generators [&,lap are given by 

[ x a b l a p  f ( [ y a l a v [ Y b l Y P  -[Yblay[YalYP)* (6.15) 

ab Vw9" =a,G" + [ x a b ] " L p w  ~4'3 

Now consider V,y,. This is 
b cd cd 

V ~ [ Y a l a P  = a w [ Y a l e p  - w a  .[?blaP f [ ~ c d l a r ~  w [ Y a l Y p  w [ Y a l " y [ x c d l y B ,  

or since the ya  matrices are constants, i.e. a,Ya = 0, 

(6.16) b cd cd 
v ,ya  = -wa uyb + &L ( x c d y a  - ?a xed) = [ - S a c Y d  + X c d Y a  - Y a  x c d l .  

Using 

(6.17) 1 
X c d Y a  - Y a x c d  = d S a c Y d  - S a d y c  1 9  

(6.16) becomes 

(6.18) cd 1 
vwya = w  f i [ - ? S a c Y d - ~ S a d Y c ] = O .  

Finally, since y, = yaea,, and due to properties (6.12) and (6.18), we have 

v , y ,  = 0. (6.19) 

Generalising (6.19) to the torsion case is easy. If we demand aweau S O ,  then 
- a b  - b w * = - e  , , ~ , e a u - F u , , e a U e b , ,  

so that 
w - ab , = w a b f i  -KY,uea"ebu 

Clearly, 

(6.20) 

(6.21) 

and so the same argument as given above results in 

qJ" = 0. (6.23) 

(Note that in the spin-; case, we also need (6.23) to justify squaring the Dirac operator 
as we did in (6.4).) 

Now we go back to the analysis of (6.11). The first and second terms vanish due 
to (6.23) and the y"+, = 0 condition, so that 

yh9h*@ - y @ a A * h  = 0.  
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Contract this with y, and use 

Y,Yu + Y V Y F  = 2 g,"] 

to obtain 

= 0. 

Thus, in the end, (6.11) becomes 

yAV**w = 0. 

VB$H4HBAt = o 
In two-component spinor language, the right-handed part of (6.26) gives 

and the left-handed part gives - H' 
V B  +AHtBr=O. 

We can 'square' (6.27) as we did for (6.3) to get 

V A B ' V B < d  HBAJ = o 
or 

(V (AB'VH)B,  + VLAB'VHjB,)4 HBA' = 0. 

This gives 

- @*BA' + 2VH'(A6,)H'4 HBA' = 0, 

which after using the Ricci identities (5.8) and (5.9) is 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

- QABA! + TA~~H~'~-~V~~'~ HBAr + $XHp'QP'AQcHQ'4 OBAr- $XBpcQP'AQsH 0' 4 HQ A' 

(6.30) 

Equation (6.30) may be written in even more detail if we substitute in the decomposi- 
tions (3.2) and (3.9). 

1 '  P - FRpA' Q ~ A P . H " ~  H ~ Q '  = 0. 

Summarising, we demand that fields 4 (1,;) and & ($, 1) satisfy 

- a 4 A B A 8  + 20H'(aVH)H'4 HBA' = 0,  

- f i 4 A A * B ,  + 2VH(A'VH' jH4AH'B'  = 0,  

(6.29) 

(6.31) 
respectively. 

= 0, 
transforms according to the direct sum (1, 1)@(0,0) representation, is governed 

(6) The symmetric spin-2 field h,,, obeying the condition V F  (hFU - ;g,,h 

by 
-Oh , ,  - T,piVThPy - T,,,'VJl," +Rlp,hP, +dpyh,"  - R l , p y ~ p T  -Rlup,rhpT= 0,  (6.32) 

which is the simplest generalisation of the usual spin-2 equation 

- Oh, ,  -I- R,,h p y  + Rp,,hFP - 2RwPvJl pr = 0,  (6.33) 

with the first derivative terms added in just the way they were in the spin-1 case. (It 
is interesting to ask how we might derive the spin-2 equations from an action principle, 
Equation (6.33) comes easily from the second functional derivative of Einstein's 
action. However, (6.32) is not so easily derived. We shall return to this question in 
a future publication.) 
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(7) Consider differential p -forms 

w = ( l / p ! ) ~ ~ ~ , , . ~ ~  dx”’ A . . . A dx”p, (6.34) 

(i.e. 4 ( 0 , 0 ) ,  4(;, t ) ,  4(1,0) and 4 ( 0 ,  1)); 8 for forms coincides with the non-zero 
torsion version of the Hodge4e  Rham operator 

(6.35) d = a i  + 52, 
where 

= ( l / p  ! ) 6 , + ~ ~ ~ . , , ~ ~  dx A dx A . . . A dx ”D, 

th ~ [ l / ( p - l ) ! ] ~ ~ ~ ~ ~ ~ . . , ~ ~ d x ~ ~ ~  . . . A dx’Ip. 

(6.36) 

(6.37) 

This is consistent with requirements ( 2 )  and (4). 

regular ‘bosonic’ p-forms 
(8) We define a ‘fermionic’ differential p-form by putting a spinor index on the 

(6.38) U “  =( l /p! )u”@ ,... I r p  dx”’ A . . . A dx”p. 

We also devise a new operation 

(yw)“ = i[ l /(p - l)!][y”]”,w B F f i z . , . l l D  dxW2 A . . . A dxFD. (6.39) 

The fields q5($, 0), 4(0, $), 4 ( l ,  t ) ,  4(;, l), 4(;, 0) and 4(0, ;) can all be represented 
as fermionic forms. Introducing the operator 

6= ay + ya,  (6.40) 

we see that for a ‘fermionic O-form’ 

(Vu)“ = ( y  = i[yF]uBV+wp. (6.41) 

6 is the Dirac operator for spin-; fields. For spin-;, 6 is still the Dirac operator when 

We require that on fermionic forms d be 6*. This is consistent with requirements 
(3) and (5). 

If we now study these eight criteria carefully we notice some patterns. Both 
fermions and bosons have ‘form’ structures. The boson operators all have a similar 
structure when they are written in tensor notation, as do the fermions in both tensor 
and two-component spinor notation. Can we make a choice of arbitrary spin operator 
that is simple, but also incorporates each field equation? 

There is an obvious choice of d for fermions, namely 

(yw)” = 0. 

- - 
A >B, (6.42) 

A < B .  (6.43) 

But what about bosons? To get a two-component spinor version of the boson 
equations, we first look at the so-called Lichnerowicz operator acting on tensors of 
arbitrary rank and generalised to the non-zero torsion case 

- H ’  H 
- O ~ A ~ . . . A ~ A A ~ . . . A ~ B  + 2VHr (A1VH)  4 A2.,.A2,,Ai..AiB, 

-0 4 A 1  ... A ~ A A ~ . . . A ~ B  + 2 6 H ( A i v H ’ ,  ~ A I . . . A ~ A  

- - H  H ’  
Ai ... Ai57 

n 

Z\T@l...k = - f i T ’ i . . . * n  - [vl.,, 6v]T”i...”...b (6.44) 
i = l  

When there are no indices, 

AT = -BT, 
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the scalar field operator of requirement (2). With one index, . .  
ATWi = -BTh-[[V@i, V,]T" = -0TWl- TWlyPvpTY +dUWlTY,  (6.45) 

the spin-1 operator of (3 ) .  With two symmetric indices, 
ATWiw2 = -0T*iW2 -[v*i, vy]TyW2_[v*2, vV]T@i" 

= -aT@1"2 - T ~ i y P v p T " b  - ThyPepTWiV 

+ E u W i  TYW2 + gvW2TWi - TYPE 4 V P  W i  - T 
W i  " W 2  P9 (6.46) 

We can rewrite (6.46) in two-component spinor form using the Ricci identities 
the spin-2 operator we want in requirement ( 5 ) .  

(5.8) and (5.9). The result is 

A4 A1 ... A ~ A A  i ... A;, 

2 8  

A + B = integer. (6.47) 

For reasons we shall give in the next section, we choose a set of boson equations 
which coincide with (6.47) for low spins, but differ at high spins. We pick instead 

H '  + 1 ~ H ( A j ~ H ' ) H ~ A i . . . A 2 A A i . . .  ... Aie, 
i = l  

H 
= - @ A I . . . A ~ A A ~ . . . A ~ B  f2AvH'(AivH)H'4 A2 ... A z A A ~  ... A ~ B  

A + B = integer. (6.48) 

This boson equation is as similar to (6.42) and (6.43) as we can make it and still have 
it satisfy our criteria. 

In conclusion, we will use (6 .42) ,  (6.43) and (6.48) as our arbitrary spin field 
equations. 

H' 
f 2BvH(AivH'lH4A,. . .Az~ A i . . . A i ~ 9  

7. Consistency conditions 

Consider the fermion field equations obtained by setting (6 .42)  equal to zero. Remem- 
bering that C $ A , . . . ~ ~ ~ A ~ . . . A ~ ,  is completely symmetric, it is easy to see that if we hit 
(6.42) with e A i A 2  we get 

vH' (A lvA2)H '4A1A2A9 ... A2aAi ... Aia =O, A>B. (7.1) 

This is the consistency condition for fermion fields C$A,...A2AAi...A'2B with A >B. We 
notice two things immediately. First, if we have A < 1  there are no consistency 
conditions. Clearly, in order to form (7 .1)  in the first place, we need at least two 
unprimed indices on the spinor field. Secondly, we see that (7 .1)  is the double 
contraction of the Ricci identity (5 .8) .  

Let us look at the simplest case, (i, 0). Since A = i< 1,  there is no consistency 
condition. Thus, so long as the manifold admits a spin structure, there will be no 
restriction on the torsion or curvature. However, moving on to the (l, 0) case, we have 

2rH'(A1vA21H'4A1A2Aa = 0. (7 .2)  
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What do the conditions (7.10) tell us? If we require that 4AI...A2A # 0 and 

+TA1A2QQr = 0 ,  @ A ~ A ~  = 0 ,  @A,A1A2Q= 0 ,  (7.11) 

i.e. by taking the torsion, antisymmetric part of the Ricci tensor and the Weyl tensor 
to be anti-self-dual. Under these conditions, if we require that fields (A,  0) and (0 ,  A )  
both appear, we force Tapy = 0 and we are led back to the old consistency conditions. 
This is a drastic step and defeats the purpose of adding torsion in the first place. All 
that we can really say is that given a manifold with curvature and torsion, the field 
~ A ~ . . , A ~ ~  and its first covariant derivative must satisfy relation (7.10'1. Alternatively, 
given a field ~ A , . . . A ~ ~  and its covariant derivative, the torsion and curvature must 
have values that obey (7 .10) .  

For fields transforming according to a representation other than (A,  0) or (0, A) ,  
we get slightly different conditions. Look at the spin-; field (1, a). The consistency 
conditions are 

?HI(A1vA2)  dAlA2A; = O  (7 .12 )  

vQQ'4AI. . .A2A # 0,  then we can satisfy (7 .10 )  by choosing 

- H' 

or 
$ T A , P ! A ~  P' QQ~v 'QQ' 4 A l A 2  Ai + ~ Q p ' A 1 P ' A l Q , A 2 Q ' 4 Q A 2 A ;  

( 7 . 1 3 )  + i E Q P ' A 2  P 'A2  Q'A1 Q' 4 A,Q A; -ZRPA; 1 - P Q 'A1P 'AZP'4  A I A 2 Q '  = 0 ,  

The spinor decomposition of this condition is 

(7.14) i+TA,A,QQ#v QQ' 4 A l A 2  ai + 8 6 A 1 ~ 2 C $ A 1 A 2 ~ i  - $ A ~ Q ' A ~ A ~ ~ ~ ~ ~ ~ ~ '  = o .  
For fields transforming like (A,  4) with A = 1 , 2 , 3 ,  . . .  , (7.14) generalises to 

QQ' A,A2 i t T A i A z Q Q ' 9  4 A3 . . A ~ A A ~  +4(A f 1 )QA1Az4A1A2A3. . .Az~A i  

(7 .15 )  

It is now obvious that the consistency conditions for fermion fields transforming 
according to the (A, B )  representation with A > B are 

QQ' A l A 2  i+TA,AzQQ'9 4 A3 ... A z A A ~  ... Ai ,  +4(A + ' ) ~ A I A z ~ ~ ' ~ ~ A  ~ . . .  A z A A ~ . . . A ~ B  

(7.16) 

Following a similar path, we get the consistency conditions for fermion fields transform- 
ing according to the (A, B )  representation with A < B. They are 

(7 .17 )  
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The boson field equations we have chosen are 

-04Al . . .A2 ,+ ,Ai . . .A i~  + 2  AaH'(AiaHjH'4HA2 ... A ~ A A ~ . . . A ~ B  

( 7 . 1 8 )  H' 
2 B e H ( A j a H ' , H 4 A i . . . A 2 ~  A i  ... A i , =  0. 

Hitting this with E gives the condition 

( 7 . 1 9 )  

while hitting ( 7 . 1 8 )  with eAiA; gives 

( 7 . 2 0 )  

It is easy to see that the 2A and 2B factors in ( 7 . 1 9 )  and ( 7 . 2 0 )  are superfluous. 
Consider ( 7 . 1 9 )  for example. In order to form the condition in the first place we 
must have A 3 1. Obviously 2A a 2  and so we can simply divide out the 2A factor. 
Similarly the 2B factor drops off from ( 7 . 2 0 ) .  Hence, the boson consistency conditions 
become 

A;A; 
2 B e H ( A i e A i , H 4 A i . . . A 2 ~  A ~ . . . A ~ B  = 0. 

( 7 . 2 1 )  

which are identical in form to the fermion ones. Bosons must satisfy both ( 7 . 1 6 )  and 
( 7 . 1 7 ) .  

Suppose we are given non-zero 4 A 1 . . . ~ 2 A ~ ; . . . ~ i e  and a Q Q ' 4 ~ 1 . . . ~ 2 A ~ i . . . ~ ; B .  The 
consistency conditions divide up the possible manifolds into classes defined by which 
components of the torsion and curvature tensors are restricted: 

Components Components 
Manifold type restricted Manifold type restricted 

I None V ' T ,  e,?, 6 
I1 ' T ,  e V -T, 6, q, 6 
I1 -T, 6 VI +T, -T, GL6, QL% 
I11 ' T ,  e, \U VI1 ' T ,  -T, 6, e, 6, $, 9 
111 -T, 6 , q  VI1 ' T ,  -T, 6>6, 6,,&, 4 
IV 
IV 

- 
- 

- - 

' T ,  e, 6 VI11 ' T ,  -T, 6, 6,6,6, 4, 5 
-T, 6 ,6  - 

The results of the consistency conditions for fields transforming according to the 
(A,  B )  representation of SO(4) with A + B s 3 are summarised in the following table. 

By 0 112 1 312 2 512 3 

0 I I I1 I11 I11 I11 I11 
112 - I r JV V V V V 
1 __ I1 - IV - VI V VI1 V VI1 
312 - I11 - V - V VI11 V VI11 V 
2 - I11 - V - VI1 V - VI11 V VI11 
512 - I11 - V v - VI11 V VI11 V 
3 I11 V VI1 V VI11 V VI11 

For example, a non-zero field + A , A ~ A ~ A . A ~ A *  [+ ( 2 , l ) I  forces restrictions of types VII. 
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It is important to note that if we ask that, for example, both (1, i) and (i, 1)  type 
fields exist, then the restrictions are type VI, the union of IV and IV. It is also 
crucial to remember that these restrictions do not necessarily force any component 
of the torsion or curvature to be zero as they can do in the torsion-free case (see 
Christensen and Duff 1979). 

We can now discuss our reasons for choosing (7.18) as our field equations rather 
than those we can obtain from (6.46) 

(7.22) 

If we contract E~~~~ or c A i A ;  into (7.22) we get O = O .  These field equations are 
already consistent! It seems that (7.22) might be a better choice. We would not have 
to contend with complicated boson consistency conditions. However, there are several 
reasons, all related, to prefer the equations (7.18). 

In previous work on the torsion-free case (Christensen and Duff 1979), we studied 
index theorems and found that forming them required the commutativity property 

- H  H' 2 8  . 
+ 1 QH(A:VH')  4 A  l. . .AZAAi...  ... AjB=O.  

1 = 1  

which in turn was satisfied only when the boson consistency conditions hold. The 
derivation of index theorems in the torsion case will require the same sort of condition. 
Also, if we want the torsion case to reduce to the torsion-free case, then we must 
have the torsion consistency conditions reduce to the torsionless ones when TmBy = 0. 
This would not happen with (7.221, but does with (7.18). 

In the torsion-free case we also studied the idea of a super index theorem. These 
theorems relate boson and fermion zero modes. As is standard in supergravity theories, 
bosons and fermions are put into multiplets. It seems unlikely that one set of fields 
in a multiplet would satisfy consistency conditions while another set does not. In any 
case the existence of fermions on a curved manifold with torsion will require some 
conditions on the components of the torsion and curvature. 

Finally, the consistency conditions can give us clues for building a theory which 
is consistent from the start. For example, suppose that we know nothing about 
supergravity. From the table we see that the (1,l) portion of the spin-2 field (the 
graviton) forces conditions of type VI while the spin-; (1, t )  and (t, 1) fields give the 
same conditions. One could guess that a coupling of the spin-2 and spin-; fields 
through a theory with torsion might give a consistent theory. This is exactly what 
supergravity does. The torsion is directly related to the spin-; field and any possible 
inconsistent terms are eliminated. 
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Note added. After the manuscript of this paper was completed we obtained a copy 
of a 1981 Moscow University Report ‘Spectral Geometry of the Riemann-Cartan 
Space-Time’ by Yu N Obukhov. Higher spin field equations and their consistency 
conditions are also discussed in this report. Obukhov’s results are different from ours. 
In particular, his consistency conditions appear to be more restrictive. 

References 

Aragone C 1981 in Superspace and Supergravity ed S W Hawking and M Rocek (Cambridge: CUP) 
Aragone C and Deser S 1979a Phys. Lett. B 86 161 
- 1979b in Supergravity ed P van Nieuwenhuizen and D Z Freedman (Amsterdam: North-Holland) 
- 1980 Nucl. Phys. 170 [FSI] 329 
Barvinsky A 0 and Vilkovisky G A 1981 Nucl. Phys. B 141 237 
Berends F A, van Holten J W, van Nieuwenhuizen P and deWit B 1979a Phys. Lett. B 83 188 

- 1980 J .  Phys. A: Math. Gen. 13 1643 
Buchdahl H A 1958 Nuouo Cimento 10 96 
- 1962 Nuovo Cimento 25 486 
Christensen S M 1980 J.  Phys. A: Math. Gen. 13 3001 
Christensen S M and Duff M J 1979 Nucl. Phys. B 154 301 
Curtright T 1979 Phys. Left. B 85 219 
DeWitt B S 1965 Dynamical Theory of Groups and Fields (New York: Gordon and Breach) 
Dowker J S and Dowker Y P 1966 Proc. Phys. Soc. 87 65 
Fang J and Fronsdal C 1978 Phys. Rev. D 18 3630 
Freedman D Z 1979 in Supergravity ed P van Nieuwenhuizen and D Z Freedman (Amsterdam: North- 

Fronsdal C 1978 Phys. Rev. D 18 3624 
- 1979 in Supergravity ed P van Nieuwenhuizen and D Z Freedman (Amsterdam: North-Holland) 
Goldthorpe W H 1980 Nucl. Phys. B 170 [FSI] 307 
Hehl F W, von der Heyde P, Kerlick G D and Nester J M 1976 Rev. Mod. Phys. 48 393 
van Holten J W 1979 in Supergravity ed P van Nieuwenhuizen and D Z Freedman (Amsterdam: North- 

Jackiw R and Rebbi C 1977 Phys. Rev. D 16 1052 
Kimura T 1981 J.  Phys. A: Math. Gen. 14 L329 
Lichnerowicz A 1961 Propagateurs et Commutateurs en Relativite Generale (Paris: IHES, Publications 

_. 1964 in Relativity, Groups and Topology ed C DeWitt and B DeWitt (New York: Gordon and Breach) 
Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco: Freeman) 
Nieh H T and Yan M L 1982 Ann. Phys. 138 237 
van Nieuwenhuizen P 1981 Phys. Rep. 68 189 
Obukhob Yu N 1982 Phys. Lett. B 108 308 
Penrose R 1968 in Baffle Rencontres ed C M DeWitt and J A Wheeler (New York: Benjamin) 
Pirani F A E 1964 in Lectures in General Relativity ed S Deser and K Ford (Englewood Cliffs: Prentice-Hall) 
Singh L P S and Hagen C R 1974a Phys. Rev. D 9 898 
- 1974b Phys. Rev. D 9 910 
Weinberg S 1965 Gravitation and Cosmology (New York: Wiley) 

- 1979b Nucl. Phys. B 154 261 

Holland) 

Holland) 

Mathematiques) 


